

Благодарим Вас за то, что Вы приобрели циркуляционный насос EcoRING IV.

Настоящий паспорт и инструкция по эксплуатации предназначен для изучения работы, правил монтажа, эксплуатации и технического обслуживания циркуляционных насосов EcoRING IV.

К монтажу и эксплуатации циркуляционных насосов, и другим работам, связанных с гидравлическим и электрическим системы. подбором модели расчетом насосов. монтажом подключением насосов электросети к допускаются квалифицированные специалисты, обладающие необходимыми знаниями и изучившие настоящий паспорт и инструкцию по эксплуатации.

Ответственность за несоблюдение данного требования и возможный ущерб, возникший вследствие ошибок при подборе, монтаже и эксплуатации оборудования, несет владелец оборудования.

СОДЕРЖАНИЕ

		стр.
1	Общие сведения об изделии	2
2	Технические данные	3
3	Обозначение насосов	6
4	Комплект поставки	7
5	Меры безопасности	8
6	Монтаж насоса	10
7	Установка режима работы насоса	15
8	Настройки и рабочие характеристики	22
9	Диаграммы характеристик насоса	23
10	Ввод в эксплуатацию и обслуживание	26
11	Транспортировка и хранение	28
12	Утилизация	28
13	Возможные неисправности и способы их устранения	29
14	Гарантийные обязательства	30
15	Свидетельство о продаже	31

Примечание: Предприятие-изготовитель оставляет за собой право вносить изменения в паспорт и инструкцию по эксплуатации и конструкцию циркуляционных насосов, не ухудшающие потребительского качества изделия.

1. Общие сведения об изделии.

- 1.1. Циркуляционные насосы серии EcoRING IV предназначены для использования в системах отопления.
- 1.2. Насосы серии EcoRING IV являются наиболее подходящими для следующих систем:
 - Стабильная система отопления с переменным расходом;
- Система отопления с переменной температурой теплоносителя в трубопроводе;
 - Система топления с ночным режимом;
 - Система отопления, вентиляции и кондиционирования.
- 1.3. Циркуляционные насосы серии EcoRING IV оснащены двигателем с постоянными магнитами и электронным регулятором перепада давления, которые обеспечивают возможность автоматической и бесперебойной настройки параметров работы двигателя для достижения реальных потребностей системы.

Насос также оснащен удобной панелью управления.

- 1.4. Преимущества:
- Простая установка и запуск.

Поставляется со встроенным режимом саморегулирования – AUTO (начальные настройки). В большинстве случаев насосу не требуются дополнительные настройки и он может быть сразу запущен в работу, автоматическое саморегулирование обеспечит достижение реальных потребностей системы.

- Высокая степень комфорта.
- Низкий уровень шума работы двигателя насоса и всей системы.
- Низкое энергопотребление. В сравнении с обычными циркуляционными насосами насосы серии EcoRING IV отличаются более низким энергопотреблением. Данная серия насосов отмечена знаком Европейской энергоэффективности по классу А. Минимальный уровень энергопотребления может достигать до 10 Ватт.

2. Технические данные.

- 2.1. Допустимый диапазон температур окружающей среды: от 0°C до $+40^{\circ}\text{C}$.
 - 2.2. Максимальная влажность: 95%.
- 2.3. Допустимый диапазон температур рабочей жидкости: от $+2^{\circ}\text{C}$ до $+110^{\circ}\text{C}$.
- 2.4. Для того, чтобы избежать образование конденсата необходимо, чтобы температура перекачиваемой жидкости всегда была выше температуры окружающей среды.
 - 2.5. Максимальное давление в системе: 1 МРа (10 бар).
 - 2.6. Степень защиты: ІР42.
- 2.7. Значения минимально необходимого давления на входном патрубке насоса зависят от температуры перекачиваемой жидкости (см.Таблицу 1).

Таблица 1

Температура перекачиваемой жидкости	85°C	90°C	110°C
Минимальное давление на входе насоса, bar	0,05	0,28	1,0
Высота подачи, м	0,5	2,8	10

- 2.8. Перекачиваемая жидкость должна быть маловязкой, неагрессивной и невзрывоопасной, которая не содержит твердых и волокнистых частиц или минеральных масел. Насос не должен использоваться для перекачивания легко воспламеняющихсяжидкостей. Еслинасосбудетиспользоваться в системах со сравнительно высокой вязкостью жидкости, то показатели производительности насоса будут более низкие. Соответственно, при подборе насосного оборудования нужно руководствоваться, в том числе и вязкостью перекачиваемой жидкости.
 - 2.9. Параметры электрической сети: 220-240В, 50Гц.
 - 2.10. Класс изоляции: Н.
 - 2.11. Класс звукового давления: 43 дБ (А).
- 2.12. В целях предотвращения образования конденсата в клеммной коробке и роторе, температура перекачиваемой насосом жидкости должна всегда быть выше температуры окружающей среды (см.Таблицу 2).
- 2.13.Технические характеристики циркуляционных насосов в зависимости от модели приведены в таблице 3 и Рис.1-2.

Темпертура	Температура перека	Температура перекачиваемой жидкости		
окружающей среды (°C)	Мин (°С)	Макс (°С)		
0	2	110		
10	10	110		
20	20	110		
30	30	110		
35	35	90		
40	40	70		

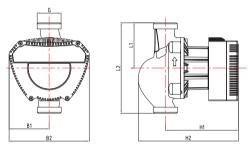


Рис.1 Обозначение монтажных размеров насов с резьбовым соединением

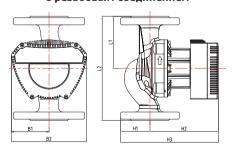


Рис.2 Обозначение монтажных размеров насов с фланцевым соединением

Мощность	Модель	Макс. Макс. расход напор	Макс. напор	Ток	В/Гц	Материал корпуса		_	_a6a	рит	ы	pası	ерь	Габаритные размеры, мм
Вт		н/₅М	Σ	٧	220-240B 50/60Fu	Чугун	11	L2	B1	B2	H	Н2	H3	Присоед. размер
130	Hacoc ZOTA EcoRING IV 25/80 180	6,5	8	6′0	+	+	06	180	80	160 144 199	144	199	1	
185	Hacoc ZOTA EcoRING IV 25/100 180	٦	10	1,25	+	+	06	90 180 80	80	160 144 199	144	199	- 1	1 1/2"
250	Hacoc ZOTA EcoRING IV 25/120 180	`	12	1,85	+	+	06	180	80	160 144 199	144	199	1	
130	Hacoc ZOTA EcoRING IV 32/80 180	8	8	6,0	+	+	90	90 180 45	45	90 144 199	144	199	1	
185	Hacoc ZOTA EcoRING IV 32/100 180	Ç	10	1,25	+	+	06	180	45	06	144 199	199	1	2″
250	Hacoc ZOTA EcoRING IV 32/120 180	01	12	1,85	+	+	06	90 180 45	45	90 144 199	144	199	1	
06	Hacoc ZOTA EcoRING IV* 40/60F 220	7,5	9	0,63	+	+	110	110 220 80	80	160	62	62 144 206	206	
130	Hacoc ZOTA EcoRING IV* 40/80F 220	8.5	8	6'0	+	+	110	110 220	80	160	62	144 206	206	DN40
185	Hacoc ZOTA EcoRING IV* 40/100F 220	10	10	1,25	+	+	110	220	80	110 220 80 160 62 144 206	62	144	206	

*Поставляется без ответных фланцев

3. Обозначение насосов.

3.1. Название модели насоса состоит из латинских букв и арабских цифр. Маркировка показана на рисунке 3.

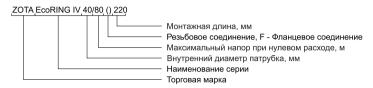


Рис.З Маркировка насоса

3.2. Обозначения шильдика насоса приведены в таблице 4 и рисунке 4.

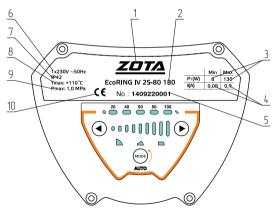


Рис.4 Описание шильдика (таблички) насоса

Таблица 4

Νō		Описание	
1	Бренд	ZOTA	
2	Модель изделия		
3	Мощность, W	Минимальное значение, Min – минимальная потребляемая мощность P1	
	мощность, w	Максимальное значение, Max – максимальная потребляемая мощность P1	
4	Сила тока, А	Минимальное значение, Min – минимальный ток	
	сила тока, А	Максимальное значение, Мах – максимальный ток	
5	хххххх - дата, хххх - серийный номер Десятую обозначают десятую обозначают серийный номер		
6	Напряжение, V; частота, Hz		
7	Степень защиты IP42		
8	Максимальная температ	ура, °С	
9	Максимальное давление	e, MPa	
10	Маркировка соответств	ия СЕ	

4. Комплект поставки.

4.1. Комплект поставки циркуляционных насосов EcoRING IV.

Таблица 5

No	Наименование	Количество, шт
1	Насос в сборе	1
2	Комплект гаек	2*
3 Упаковка 1		1
4	Паспорт и инструкция по эксплуатации	1

^{*}см.Таблицу 3

5. Меры безопасности.

- 5.1. Перед установкой и запуском насоса внимательно ознакомьтесь с содержанием данного паспорта и инструкции по эксплуатации.
- 5.2. Производитель не несет ответственности за полученные повреждения, порчу насоса или причинения вреда другому имуществу, которые возникли в связи с несоблюдением описанных требований по безопасности.

5.3. Монтажники и операторы должны проводить работы в соответствии с местными правилами по технике безопасности.

- Пользователь подтвердить, должен обслуживанию сервисному **установке** допускаются только квалифицированные специалисты. прошедшие профессиональную сертификацию ознакомленные содержанием настоящего паспорта и инструкции эксплуатации.
- 5.5. Насос не должен устанавливаться в сыром помещении или в месте, где он может быть залит/забрызган водой.
- 5.6. Для удобства сервисного обслуживания с обеих сторон насоса следует установить запорные клапаны.
- 5.7. Прежде чем осуществлять установку или сервисное обслуживание насоса следует отключить его от электропитания.
- 5.8. Для того, чтобы избежать повышенного содержания извести в воде, циркулирующей в трубопроводе, что в свою очередь может заблокировать рабочее колесо, не следует часто заполнять трубопровод теплоснабжения не смягченной водой.
 - 5.9. Не запускайте насос без жидкости.
- 5.10. Насос не подходит для использования в трубопроводах с питьевой водой.
- 5.11. Жидкость может быть высокой температуры и под высоким давлением, вследствие этого во избежание получения ожогов перед перемещением или демонтажом насоса необходимо полностью откачать жидкость из системы или закрыть запорные клапаны со обеих сторон.
- 5.12. Зимой, когда насос не работает или когда температура воздуха опускается ниже 0° С, следует откачать всю жидкость из системы во избежание морозного растрескивания корпуса насоса.

- 5.13. Если насос долгое время не используется, то нужно закрыть запорные клапаны на входе и выходе насоса и отключить его от электропитания.
- 5.14. Если гибкая оболочка кабеля нарушена, то квалифицированный специалист должен провести его замену.
- 5.15. При обнаружении перегрева или неисправности двигателя, необходимо незамедлительно закрыть клапан на входе и выходе насоса и отключить насос от электропитания, а также связаться с поставщиком и сервисным центром.
- 5.16. Если обнаруженная неисправность не описана в паспорте и инструкции по эксплуатации, необходимо незамедлительно закрыть клапан на входе и выходе насоса и отключить насос от электропитания, а также связаться с поставщиком и сервисным центром.
- 5.17. Насос должен находится вне зоны досягаемости детей. После установки насоса следует принять все возможные меры во избежание доступа детей к нему.
- 5.18. Насос должен храниться в сухом, хорошо вентилируемом и прохладном месте при комнатной температуре.

6. Монтаж насоса.

6.1 Монтаж.

- При монтаже циркуляционных насосов серии EcoRING IV следует обратить внимание на то, что стрелка на корпусе насоса указывает направление потока жидкости через насос.
- При установке насоса на трубопровод следует использовать 2 уплотняющих прокладки на входе и выходе насоса (см. Рис.5).
- В момент установки насоса вал должен находиться в горизонтальном положении (см.Рис.5).

Рис.5 Установка насоса

6.2. Положение клеммной коробки.

6.2.1. Правильное положение клеммной коробки показано на рисунке 6.

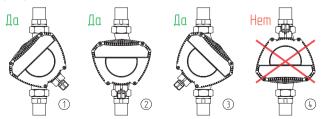


Рис.6 Положение клеммной коробки

6.3. Изменение положения клеммной коробки.

- 6.3.1. Клеммная коробка может поворачиваться на 45° за раз.
- 6.3.2. На рисунке 7 представлена процедура поворота клеммной коробки:
- 1) Закройте клапаны на входе и выходе насоса, стравите давление:
- 2) Ослабьте и уберите 4 винта, которые крепят корпус насоса;
- 3) Поверните двигатель в нужном положении таким образом, чтобы совпали крепежные отверстия;
- 4) Затяните четыре крепежных винта, поворачивая их по часовой стрелке;
 - 5) Откройте клапаны на входе и выходе насоса.

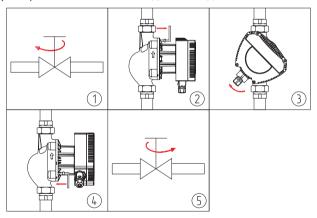


Рис.7 Изменение положения клеммной коробки

Внимание! Перекачиваемая жидкость может быть высокотемпературной и находится под высоким давлением, поэтому прежде чем откручивать винты крепления корпуса насоса, нужно предварительно полностью откачать жидкость из системы или перекрыть клапаны с обеих сторон насоса.

При изменении положения клеммной коробки обратите внимание на то, что запуск насоса можно осуществлять только после того, как в системе снова будет жидкость или когда клапаны с обеих сторон от насоса будут открыты.

6.4. Термоизоляция корпуса насоса.

- 6.4.1. Для снижения тепловых потерь рекомендуется выполнить теплоизоляцию трубопровода и корпуса насоса.
- 6.4.2. Не допускается производить теплоизоляцию клеммной коробки и панели управления насоса.

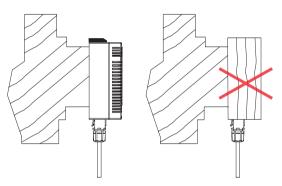


Рис.8 Правильная термоизоляция корпуса насоса

6.5. Электроподключение.

6.5.1. Электроподключение насоса должно быть выполнено в соответствии с местными нормами и правилами.

Внимание!

- Насос должен быть заземлен.
- Насос должен быть подключен к внешнему выключателю с минимальным расстоянием между контактами 3 мм.
- Насосы серии EcoRING IV не нуждаются во внешней защите электродвигателя.
- Перед подключением насоса следует проверить напряжение и частоту сети на соответствие параметрам, указанным на табличке насоса.

- Для подключения насоса к сети электропитания используйте разъем, поставляемый с насосом.
- Если контрольная лампа на панели управления загорелась, значит электропитание включено.

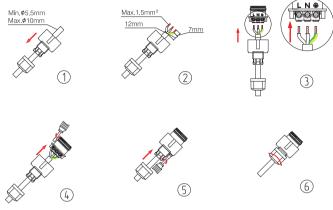


Рис.9 Схема электроподключения

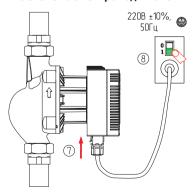


Рис.10 Электроподключение насоса

6.6. Подключение ШИМ - сигнала.

- 6.6.1. Для передачи ШИМ-сигнала используется входящий в комплект сигнальный кабель со штекером. Подключение штекера осуществляется к соответствующему разъему, расположенному на блоке управления (см. Рис.11).
 - 6.6.2. Последовательность действий следующая:
 - 1) Отключить насос от сети.
 - 2) Установить штекер сигнального кабеля в разъем.
 - 3) Подключить сигнальный кабель к внешнему котроллеру.
- 6.6.3. Данные по работе насоса с управлением по ШИМ-сигналу приведены в разделе 7.4-7.6.

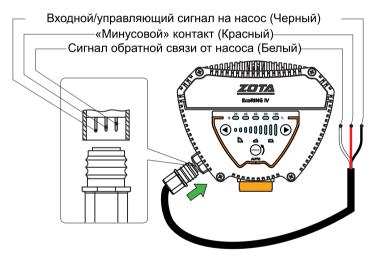


Рис.11 Схема подключения ШИМ-сигнала.

7. Режим работы.

Насосы серии EcoRING IV имеют 19 режимов работы с автоматически изменяющейся скоростью вращения вала двигателя + 9 режимов с постоянной скоростью + режим под управлением внешнего контроллера по ШИМ-сигналу. Описание режимов представлено далее.

Настройка режима работы должна быть выполнена в соответствии с типом системы (см. Рис. 12).

Начальные настройки - AUTO (саморегулирующий режим). Рекомендуемые настройки насоса приведены в таблице 6.

Таблица 6

Α	Система теплого пола	AUTO	ПД (1-9)
В	Двухтрубные системы отопления	AUTO	ПР (1-9)
С	Однотрубные системы отопления	AUTO	ПД (1-9)

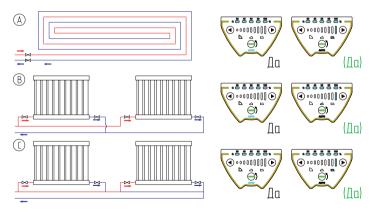


Рис.12 Настройка режима работы

7.1. Автоматический режим (AUTO).

- 7.1.1. Автоматический режим (AUTO) заводская установка автоматическая адаптация работы насоса к потребностям конкретной системы отопления. Производительность насоса регулируется автоматически в соответствии с фактической потребностью системы. Регулировка происходит постепенно, поэтому рекомендуется оставить насос в этом режиме по крайней мере на неделю, прежде чем приступать к изменению настроек насоса.
- 7.1.2. Если после работы насоса в режиме AUTO вы решили изменить настройку, а затем вновь включили автоматический режим, насос сохраняет предыдущие настройки режима AUTO и будет работать в соответствии с ними.
- 7.1.3. Параметры системы отопления изменяются медленно, поэтому для достижения оптимального режима работы может потребоваться некоторое время, от нескольких минут до нескольких часов. Если в автоматическом режиме насос не обеспечивает идеального распределения тепла для каждого помещения, то тогда необходимо выбрать более оптимальный режим работы насоса.

С кривой зависимости между настройками насоса и его рабочими характеристиками вы можете ознакомиться в разделе 9.3, рис.18.

7.1.4. В процессе работы насос регулируется по принципу «Пропорционального давления (ПР)» или по принципу «Постоянного давления (ПД)».

При работе в данных двух режимах рабочие характеристики насоса и соответствующее энергопотребление будут регулироваться на основании потребностей системы отопления.

7.2. Режим пропорционального давления (ПР).

7.2.1. В данном режиме значение давления (напора) в насосе регулируется в зависимости от изменения расхода. С кривой работы в режиме пропорционального давление ПР (1-9) вы можете ознакомиться в разделе 9.3, рис.20.

7.3. Режим постоянного давление (ПД).

- 7.3.1. В данном режиме поддерживается постоянное значение давления (напора), независимо от расхода. В режиме постоянного давления разность давлений на входе и выходе насоса остается постоянной и не зависит от потока.
- 7.3.2. С кривой работы в режиме постоянного давления ПД (1-9) вы можете ознакомиться в разделе 9.3, рис.19.

7.4. Работа насоса по ШИМ - сигналу.

- 7.4.1. Насосы серии EcoRING IV имеют возможность управляться ШИМ сигналом от внешнего контроллера, например, контроллера котла, «умного» дома и т.п. Также насос сам отправляет выходной ШИМ- сигнал на возможные приборы диспетчеризации и контроля, позволяющие отслеживать статус насоса (работа или остановка, уровень потребляемой мощности).
- 7.4.2. Характеристики входного ШИМ-сигнала для управления насосом и выходного сигнала от насоса приведены в таблице 7.

Таблица 7

Параметр	Символ	Значение
Диапазон частоты управляющего ШИМ- сигнала	fвх	100- 4000Гц
Диапазон напряжения управляющего ШИМ- сигнала (высокий уровень)	Ивх.в	4-24B
Напряжение управляющего ШИМ-сигнала (низкий уровень)	Ивх.н	≤1B
Сила тока управляющего ШИМ-сигнала (высокий уровень)	lвx	≤10мА
Коэффициент заполнения управляющего ШИМ-сигнала	d	0-100%
Частота выходного ШИМ-сигнала от насоса	fвых	75Гц±5%
Коэффициент заполнения выходного ШИМ- сигнала от насоса	d	0-100%

Т - период сигнала t - время импульса d=t/Tx100% - коэффициент заполнения

Рис.13 Характеристики ШИМ-сигнала

7.5. Входной ШИМ - сигнал.

- 7.5.1. После подключения насоса к источнику ШИМ-сигнала, скорость вращения его вала меняется в зависимости от значения коэффициента заполнения d.
 - 7.5.2. Зависимости показаны в таблице 8 и на рисунке 14.

Таблица 8

Значение коэффициента заполнения	Описание работы насоса
d=0 (ШИМ- сигнал отсутствует)	Насос автоматически переходит в режим работы, в котором он находился до подключения к источнику ШИМ-сигнала
0 <d≤10%< td=""><td>Насос работает на максимальной скорости</td></d≤10%<>	Насос работает на максимальной скорости
10 <d≤84%< td=""><td>Скорость меняется от максимальной до минимальной</td></d≤84%<>	Скорость меняется от максимальной до минимальной
84 <d≤91%< td=""><td>Насос работает на минимальной скорости</td></d≤91%<>	Насос работает на минимальной скорости
91 <d≤95%< td=""><td>Область гистерезиса (минимальная скорость/стоп)</td></d≤95%<>	Область гистерезиса (минимальная скорость/стоп)
95 <d<100%< td=""><td>Насос остановлен</td></d<100%<>	Насос остановлен
d=100%	Насос автоматически переходит в режим работы, в котором он находился до подключения к источнику ШИМ-сигнала

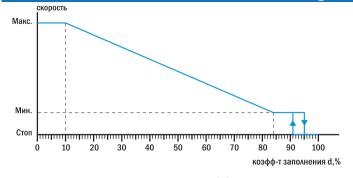


Рис.14 Зависимость скорости от коэффциента заполнения

7.6. Выходной ШИМ - сигнал.

7.6.1. Значения коэффициента заполнения выходного ШИМсигнала насоса и соответствующие этим значением состояния насоса показаны на рисунке 15.

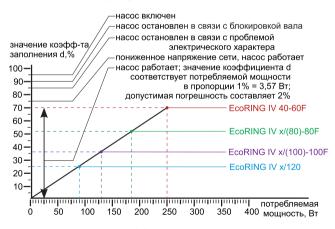


Рис.15 Зависимость коэффициента заполнения от состояния насоса

7.7. Элементы панели управления.

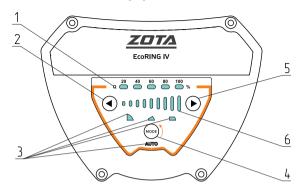


Рис.16 Элементы панели управления

- Расход
- 2 Кнопка снижения скорости
- 3 Световая область, отображающая 4 режима работы
- 4 Кнопка настройки режима работы насоса
- 5 Кнопка увеличения скорости
- 6 Световая область, отображающая скорость

7.8. Световые области дисплея, отображающие настройки работы насоса.

- 7.8.1. Циркуляционные насосы серии имеют 28 настроек, которые можно задать с помощью кнопок на лицевой панели.
- 7.8.2. Для индикации этих настроек есть 13 различных световых областей, показанных на рисунке 17.
- 7.8.3. При однократном зажатии кнопки «Mode» на 2 секунды, режим работы насоса изменится 1 раз. Полный цикл состоит из 4 нажатий на кнопку.

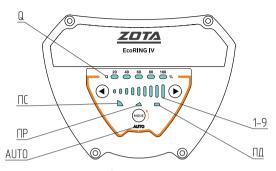


Рис.17 Световые области на панели управления

Таблица 9

Кол-во нажатий кнопки	Световая область	Описание
0	AUTO (возврат к заводским настройкам)	Автоматический
1	ПР (1-9)	Режим пропорционального давления
2	ПД (1-9)	Режим постоянного давления
3	ПС (1-9)	Режим постоянной скорости

7.9. Выявление неисправностей.

7.9.1. При включенном электропитании сегменты световой области N^0 6 (см.рис.17) будут отображать статус работы. Когда насос работает - световая область скорости всегда горит. Если эта область мигает, то в работе насоса есть проблемы. Описание соответствия индикаторов возможным проблемам указано в таблице 10.

	10000140 20
Код ошибки	Описание
Мигание - Speed 1	Повышенное напряжение
Мигание - Speed 2	Пониженное напряжение
Мигание - Speed 3	Перегрузка по току
Мигание - Speed 4	Обрыв обмотки (сигнал обрыва фазы)
Мигание - Speed 5	Ошибка запуска, рабочее колесо заблокировано
Мигание - Speed 6	Недостаточная мощность (сухой ход)
Мигание - Speed 7	Перегрев двигателя

8. Настройки и рабочие характеристики.

8.1. Зависимость между настройками насоса и его рабочими характеристиками приведена в таблице 11.

Таблица 11

Позиция	Тип системы	Настройки насоса
АUTО (заводская настройка)	Пропорциональное регулирование от самого высокого до самого низкого значения давления (напора)	Автоматический контроль работы насоса в пределах указанного диапазона: - регулировка производительности насоса в зависимости от размера системы, - регулировка производительности насоса в соответствии с изменением нагрузки в течение времени. В режиме AUTO насос работает в пропорциональном режиме управления давлением.
ПР (1-9)	Пропорциональная кривая давления	Рабочая точка насоса будет двигаться вверх/вниз по кривой пропорционального давления в соответствии с потребностями потока системы. Когда потребность в потоке снижается, давление падает, а при увеличении скорости потока- давление растет.

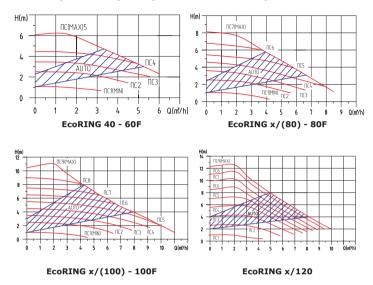
ZOTA EcoRING IV

7	\sim
	.5
_	$\overline{}$

ПД (1-9)	Кривая постоянного давления	Рабочая точка насоса будет двигаться вперед/назад по кривой постоянного давления в соответствии с потребностями потока системы. Давление (напор) при этом остается постоянным вне зависимости от потребностей по потоку.
ПС (1-9)	Кривая постоянной скорости	Насос будет работать на фиксированной скорости. При работе в режиме ПС (1-9), насос будет работать на верхней кривой при всех рабочих характеристиках. При кратковременной работе в режиме ПС(9) осуществляется быстрое развоздушивание системы.
Q (0-100%)	Индикатор производительности (расхода)	Процентное отражение производительности (расхода) при работе насоса

9. Диаграммы характеристик.

9.1. Описание зависимостей.

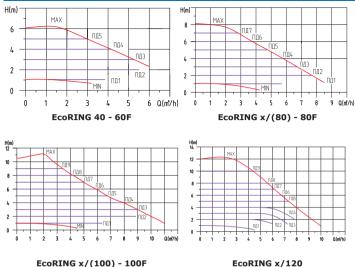

Каждая настройка насоса имеет свою характеристику: зависимость между напором (H) и производительностью (Q), а также зависимость энергопотребления насоса (P) от его производительности (Q).

9.2. Условия.

Приведенные диаграммы характеристик насосов серии EcoRING IV были получены при следующих условиях:

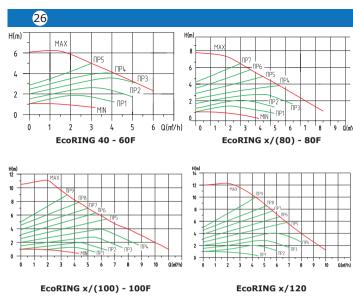
- Перекачиваемая жидкость вода без содержания воздуха/ газа;
 - Плотность перекачиваемой жидкости 983, 2 кг/м³;
 - Температура перекачиваемой жидкости +60°C;
- Кинематическая вязкость перекачиваемой жидкости 0,474 мм²/с.

9.3. Кривые характеристик насосов серии EcoRING IV.



Кривая красного цвета обозначает работу при постоянной скорости (от 1 до 9);

Теневая область синей кривой - автоматический режим.


Рис.18 Кривая характеристик при работе в режиме постоянной скорости и в автоматическом режиме

Фиолетовая кривая – режим постоянного давления (от 1 до 9).

Рис.19 Кривая характеристик при работе в режиме постоянного давления

Зеленая кривая – режим пропорционального давления (от 1 до 9).

Рис.20 Кривая характеристик при работе в режиме пропорционального давления

10. Ввод в эксплуатацию и обслуживание.

10.1. Перед тем, как производить запуск насоса убедитесь в том, что система заполнена водой, из нее удален воздух и давление на входе насоса соответствует требованиям, указанным в разделе 2.

10.1. Удаление воздуха из насоса и системы отопления.

10.1.1. Насосы серии EcoRING IV оснащены системой автоматического воздухоудаления. Наличие воздуха в насосе может вызывать шум. Шум в насосе прекратится через несколько минут его работы.

ZOTA EcoRING IV

- 10.1.2. Для быстрого удаления воздуха из насоса переведите его на короткое время (в зависимости от типа и размеров системы) в режим с постоянной максимальной скоростью ПС(9) (Рис.21). Воздух из системы удаляется при помощи автоматического клапана, установленного в верхней точке системы отопления (Рис.22).
- 10.1.3. После запуска циркуляционного насоса и удаления из него воздуха произведите настройку режима работы в соответствии с рекомендациями, указанными в разделе 7.

Внимание! Насос не может работать без перекачиваемой жидкости.

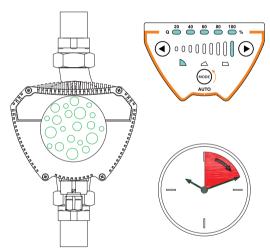


Рис.21 Удаление воздуха из насоса

Рис. 22 Удаление воздуха из системы отопления

11. Транспортировка и хранение.

- 11.1. Транспортировка должна осуществляться в индивидуальной заводской упаковке.
- 11.2. Необходимо принять меры, исключающие беспорядочное неконтролируемое перемещение, падение и другие физические воздействия на циркуляционные насосы при транспортировке.
- 11.3. Циркуляционные насосы должны храниться в сухом помещении, при температуре от -10 до +40°C.
- 11.4. При попадании циркуляционного насоса из минусовой температуры в плюсовую, циркуляционный насос необходимо выдержать не менее чем 5 часов до его запуска.

12. Утилизация.

- 12.1. Изделие не должно быть утилизировано вместе с бытовыми отходами.
- 12.2. Возможные способы утилизации данного оборудования необходимо узнать у местных коммунальных служб.
- 12.3. Упаковка изделия выполнена из картона и может быть повторно переработана.

ZOTA EcoRING IV

13. Возможные неисправности и способы их устранения.

Внимание! Прежде чем проводить ремонт или сервисное обслуживание насоса убедитесь, что электропитание насоса выключено и не сможет быть включено по случайности.

Таблица 12

Неисправность	Возможные причины	Способы устранения
	Перегорела проводка	Заменить проводку
	Не работает автоматический выключатель, контролирующий ток или напряжение	Подключите автоматический выключатель
Насос не запускается	Насос неисправен	Замените насос
Tracec ne sunyexacres	Недостаточное напряжение	Проверьте находятся ли параметры электропитания в допустимых пределах
	Рабочее колесо насоса заблокировано	Прочистите насос и удалите мешающие частицы, мусор
	Наличие воздуха в системе	Удалите воздух из системы
Шум в системе	Превышение расхода	Уменьшите напор (давление) на входе насоса
	Наличие воздуха в насосе	Удалите воздух из насоса
Шум в насосе	Слишком низкое давление на входе насоса	Увеличьте давление на входе
Недостаточный прогрев системы	Низкая производительность насоса	Увеличьте давление (напор) на входе

14. Гарантийные обязательства.

- 14.1. Гарантия на циркуляционный насос вступает в силу с даты его продажи конечному потребителю и действует в течение 24 месяцев.
- 14.2. В гарантийный период владелец оборудования имеет право на бесплатный ремонт и устранение неисправностей, являющихся производственным дефектом.
- 14.3. Срок службы изделия составляет 5 (пять) лет с момента начала эксплуатации.
- 14.4. В течение гарантийного срока изготовитель бесплатно устраняет дефекты, возникшие по вине производителя, или производит обмен изделия при условии соблюдения потребителем правил эксплуатации.
- 14.5. Гарантия не предусматривает возмещения материального ущерба или травм, возникших в результате неправильного монтажа и эксплуатации.
- 14.6. **ВНИМАНИЕ!** Гарантийные обязательства не распространяются:
- 14.6.1. На неисправности, возникшие в результате несоблюдения потребителем требований настоящего паспорта и инструкции по монтажу и эксплуатации.
- 14.6.2. На механические повреждения, вызванные внешним ударным воздействием, небрежным обращением, либо воздействием отрицательных температур окружающей среды.
- 14.6.3. На циркуляционные насосы, подвергшиеся самостоятельной разборке, ремонту или модификации.
- 14.6.4. На неисправности, возникшие в результате перегрузки насоса. К безусловным признакам перегрузки относятся:
- Деформация или следы оплавления деталей и узлов изделия;
- Потемнение и обугливание обмотки статора электродвигателя;
 - Появление цветов побежалости на деталях и узлах насоса;
 - Сильное внешнее и внутреннее загрязнение.
- 14.6.5. На ремонт, потребность в котором возникает вследствие нормального, естественного износа, сокращающего срок службы частей и оборудования и в случае полной выработки его ресурса.

- 14.7. Изделие, утратившее товарный вид по вине потребителя, обмену или возврату по гарантийным обязательствам не подлежит.
- 14.8. По вопросам качества насоса обращаться на предприятие-изготовитель по адресу: 660061, г. Красноярск, ул. Калинина 53A, тел. (391) 247-77-77.

Служба технической поддержки:

тел. (391)268-39-06, e-mail: service@zota.ru, www.zota.ru.

15. Свидетельство о продаже.

Модель насоса
Дата продажи «» 20 г.
Штамп организации продавца
Наменование торговой организации
Подпись продавца

ЗАВОД ОТОПИТЕЛЬНОЙ ТЕХНИКИ И АВТОМАТИКИ

660061, Россия, г. Красноярск, ул. Калинина, 53А тел.: 8 (800) 444-8000 e-mail: info@zota.ru; www.zota.ru